M.Sc. Physics

The M.Sc. Physics program has 20 courses offered in Physics during 4 semesters. Five Courses are offered in each of the four semesters. The course outcomes of the different courses are stated here.

PO No.	Upon completion of postgraduate programme, the students will be able
	to:
PO-1	Create, apply and disseminate knowledge leading to innovation
PO-2	Think critically, explore possibilities and exploit opportunities positively
PO-3	Work in teams, facilitating effective interaction in work places.
PO-4	Lead a sustainable life
PO-5	Embrace lifelong learning

PROGRAMME OUTCOMES (PO) OF MSc PHYSICS

PROGRAM SPECIFIC OUTCOMES (PSO) OF MSc PHYSICS

PSO No.	Upon completion of M.Sc Physics program, the students will be able to:
PSO-1	Master analytic and critical thinking skills through acquired knowledge in major branches of physics.
PSO-2	Graduates sustain intellectual curiosity and know how to continue to learn not only areas that are relevant to Physics, but also that are important to society
PSO-3	To equip the students for seeking suitable careers in Physics
PSO-4	Perform basic, applied and collaborative research.
PSO-5	Enhance pedagogical and scientific writing skills through modern methods.
PSO-6	Enhance National and International competency.
PSO-7	Kindle entrepreneurial skills and lifelong learning.
PSO-8	Become socially and environmentally responsible citizens.

Course Outcomes (CO)

Course	Outcome	
Outcome No.		
Seme	ster.1 : PH010101 MATHEMATICAL METHODS IN PHYSICS – I	
CO 1	To learn about Gradient, Divergence and Curl in orthogonal curvilinear and their	
	typical applications in physics.	
CO 2	To learn about special type of matrices that are relevant in physics and then	
	learn about tensors.	
CO 3	To study different ways of solving second order differential equations and familiarized with singular points and Frobenius method.	
	Semester.1: PH010102 CLASSICAL MECHANICS	
CO 4	To understand the Lagrangian and Hamiltonian approaches in classical	
	mechanics.	
CO 5	The classical background of Quantum mechanics and get familiarized with	
	Poisson brackets and Hamilton -Jacobi equation	
CO 6	To comprehend basic ideas about nonlinear equations and chaos.	
	Semester.1: PH010103 ELECTRODYNAMICS	
CO 8	To have a clear understanding of Maxwell's equations and electromagnetic	
	boundary conditions.	
CO 9	Have grasped the idea of electromagnetic wave propagation through wave guides	
	and transmission lines	
CO 10	Extend their understanding of special theory of relativity by including the	
	relativistic electrodynamics.	
	Semester.1 : PH010104 ELECTRONICS	
CO 11	To learn about basic operational amplifier circuits.	
CO 12	To study application of OPAMP as amplifiers	
CO 13	To learn about different Communication Systems	
Seme	ster 2: PH010201 MATHEMATICAL METHODS IN PHYSICS – II	
CO 14	Learn the fundamentals and applications of Fourier series, Fourier and Laplace	
	transforms, their inverse transforms etc.	
CO 15	To have gained ability to apply group theory to physics problems, which is a pre-	
	requisite for deeper understanding of crystallography, particle physics, quantum	
	mechanics and energy bands in solids.	
	Semester 2: PH010202 QUANTUM MECHANICS – I	
CO 16	Students are expected to be well-versed in Linear vector spaces, Hilbert space,	
	concepts of basis and operators and bra and ket notation.	
CO 17	To learn theory of angular momentum and spin matrices, orbital angular	
	momentum and Clebsh Gordan Coefficient.	
CO 18	To understand Space-time symmetries and conservation laws, theory of	
~	identical particles.	
Semester 2: PH010203 THERMODYNAMICS AND STATISTICAL MECHANICS		
CO 19	To apply the principles of statistical mechanics to selected problems.	
CO 20	To Grasp the basis of ensemble approach in statistical mechanics to a range of	
	situations	

CO 21	To learn the fundamental differences between classical and quantum statistics	
	and learn about quantum statistical distribution laws.	
Semester 2: PH010204 CONDENSED MATTER PHYSICS		
CO 22	To have a basic knowledge of crystal systems and spatial symmetries	
CO 23	To know Bloch's theorem and what energy bands are and know the	
	fundamental principles of semiconductors	
CO 24	To know the fundamentals of dielectric and ferroelectric properties of materials	
	Semester 3: PH010301 QUANTUM MECHANICS – II	
CO 25	This course will enable the student to have basic knowledge about advanced	
	techniques like approximation methods for time-independent problems like the	
	WKB approximation.	
CO 26	To learn Perturbation theory and Interaction of an atom with the electromagnetic	
	field.	
CO 27	Understand the variational equation and its application to ground state of the	
	hydrogen and Helium atom.	
CO 28	Perturbation theory and Interaction of an atom with the electromagnetic field.	
CO 29	To study relativistic Quantum Mechanics using Dirac equation, Dirac matrices	
	etc.	
	Semester 3: PH010302 COMPUTATIONAL PHYSICS	
CO 30	The students should be able to gets a wide knowledge of numerical methods in	
	computational Physics that can be used to solve many problems which does not	
	have an analytic solution.	
S	emester 3: PH010303 ATOMIC AND MOLECULAR PHYSICS	
CO 31	Know about different atom model and will be able to differentiate different	
	atomic systems, different coupling schemes and their interactions with	
	magnetic and electric fields.	
CO 32	Have gained ability to apply the techniques of microwave and infrared	
<u> </u>	spectroscopy to elucidate the structure of molecules	
0 33	different field of science & Technology	
CO 34	To become familiar with different resonance spectroscopic techniques and its	
	applications	
Semester 3:	PH810301 SOLID STATE PHYSICS FOR MATERIALS (Elective Course	
	1)	
CO 35	In this paper students study about various crystal imperfections atomic	
	diffusion and different kind of crystal bindings	
CO 36	To understand different type of excitations in solid such as plasmons,	
	polaritons and magnons and their importance	
	Semester 4: PH010401 NUCLEAR AND PARTICLE PHYSICS	
CO 37	After successful completion of the course, the student is expected to have a	
	basic knowledge of nuclear size, shape, bindingenergy.etc and also the	
	characteristics of nuclear force in detail.	
CO 38	Be able to gain knowledge about various nuclear models and potentials	
	associated.	

CO 39	Acquire knowledge about nuclear decay processes and their outcomes. Have a	
	wide understanding regarding beta and gamma decay.	
Semester 4: PH810402 SCIENCE OF ADVANCED MATERIALS (Elective Course 2)		
CO 48	Acquire knowledge about different materials such as Ceramics, polymers and	
	composites and study their properties	
CO 49	To have knowledge about photonic materials such as LEDs, solar cell and	
	photonic crystals and their working principles	
CO 50	Have information about materials used to fabricate various semiconductor	
	devices.	
Semester 4: PH810403 NANOSTRUCTURES AND MATERIALS		
	CHARACTERIZATION (Elective Course 3)	
CO 51	This course will enable the student to have basic knowledge about preparation	
	of quantum nanostructures	
CO 52	To learn about Microelectromechanical Systems and Nanoelectrochemical	
	systems.	
CO 53	To Study carbon nanotubes and their applications.	
	Practical papers (PH1P01, PH1P02, PH1P03 and PH1P04)	
CO 54	PH1P01: These practical papers make the student familiar with General physics	
	experiments like Cornu's method, Quincke's method, Photoelectric effect etc.	
CO 55	PH1P02: On completion of this paper students will be expertise in handling	
	specific electronic equipments like CRO, function generators etc.	
CO 56	PH1P03: Here practicals in computational physics are performed using C++	
	language which will give a new experience to the students in the field of	
	computer simulations.	
CO 57	PH1P04: In their material science lab, students will learn to analyze XRD	
	spectrum, U-V spectrum etc.	